# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "TrendLSW" in publications use:' type: software license: GPL-3.0-or-later title: 'TrendLSW: Wavelet Methods for Analysing Locally Stationary Time Series' version: 1.0.2.9000 doi: 10.32614/CRAN.package.TrendLSW abstract: Fitting models for, and simulation of, trend locally stationary wavelet (TLSW) time series models, which take account of time-varying trend and dependence structure in a univariate time series. The TLSW model, and its estimation, is described in McGonigle, Killick and Nunes (2022a) , (2022b) . New users will likely want to start with the TLSW function. authors: - family-names: McGonigle given-names: Euan T. email: e.t.mcgonigle@soton.ac.uk - family-names: Killick given-names: Rebecca - family-names: Nunes given-names: Matthew repository: https://euanmcgonigle.r-universe.dev repository-code: https://github.com/EuanMcGonigle/TrendLSW commit: 638f22a1a2481cc0a4032eec1bb409b1dd1357d9 url: https://github.com/EuanMcGonigle/TrendLSW contact: - family-names: McGonigle given-names: Euan T. email: e.t.mcgonigle@soton.ac.uk